CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
The Alekseevskii conjecture in low dimensions
Autor/es:
RAMIRO A. LAFUENTE; ROMINA M. ARROYO
Revista:
MATHEMATISCHE ANNALEN
Editorial:
SPRINGER
Referencias:
Lugar: Berlin; Año: 2017 vol. 367 p. 283 - 309
ISSN:
0025-5831
Resumen:
The long-standing Alekseevskii conjecture states that a connected homogeneousEinstein space G/K of negative scalar curvature must be diffeomorphic to R^n. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.