CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
On fusion rules and solvability of fusion categories
Autor/es:
MELISA ESCAÑUELA GONZÁLEZ; SONIA NATALE
Revista:
JOURNAL OF GROUP THEORY
Editorial:
WALTER DE GRUYTER & CO
Referencias:
Lugar: Berlin; Año: 2017 vol. 20 p. 133 - 167
ISSN:
1433-5883
Resumen:
We address the question whether the condition on a fusion category being solvable or not is determined by its fusion rules. We prove that the answer is affirmative for some families of non-solvable examples arising from representations of semisimple Hopf algebras associated to exact factorizations of the symmetric and alternating groups. In the context of spherical fusion categories, we also consider the invariant provided by the S-matrix of the Drinfeld center and show that this invariant does determine the solvability of a fusion category provided it is group-theoretical.