CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Conformal Killing 2-forms on four-dimensional manifolds
Autor/es:
MARÍA LAURA BARBERIS; ADRIÁN ANDRADA; ANDREI MOROIANU
Revista:
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
Editorial:
SPRINGER
Referencias:
Lugar: Dordrecht; Año: 2016 vol. 50 p. 381 - 394
ISSN:
0232-704X
Resumen:
We study 4-dimensional simply connected Lie groups G with left-invariant Riemannian metric g admitting non-trivial conformal Killing 2-forms. We show that either the real line defined by such a form is invariant under the group action, or the metric is half conformally flat. In the first case, the problem reduces to the study of invariant conformally Kähler structures, whereas in the second case, the Lie algebra of G belongs (up to homothety) to a finite list of families of metric Lie algebras.

