CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Isospectral hyperbolic surfaces have matching geodesics
Autor/es:
PETER S. DOYLE; JUAN PABLO ROSSETTI
Revista:
New York Journal of Mathemtatics
Referencias:
Año: 2008 vol. 14 p. 193 - 204
Resumen:
We show that if two closed hyperbolic surfaces (not necessarily orientable or even connected) have the same Laplace spectrum, then for every length they have the same number of orientation-preserving geodesics and the same number of orientation-reversing geodesics.Restricted to orientable surfaces, this result reduces to Huber’s theorem of 1959. Appropriately generalized, it extends to hyperbolic 2-orbifolds (possibly disconnected). We give examples showing that it fails for disconnected flat 2-orbifolds.