CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
Autor/es:
M. S. RIVEROS, R.E VIDAL
Revista:
MATHEMATICAL INEQUALITIES & APPLICATIONS
Editorial:
ELEMENT
Referencias:
Lugar: Zagreb; Año: 2015 vol. 8 p. 1087 - 1109
ISSN:
1331-4343
Resumen:
In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.