CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Characterization of 9-dimensional Anosov Lie Algebras
Autor/es:
M. MAINKAR; WILL, CYNTHIA
Revista:
JOURNAL OF LIE THEORY
Editorial:
HELDERMANN VERLAG
Referencias:
Año: 2015 vol. 25 p. 257 - 273
ISSN:
0949-5932
Resumen:
The classification of all real and rational Anosov Lie algebras up to dimension 8 is given by Lauret and Will. In this paper we study 9 -dimensional Anosov Lie algebras by using the properties of very special algebraic numbers and Lie algebra classification tools. We prove that there exists a unique, up to isomorphism, complex 3 -step Anosov Lie algebra of dimension 9. In the 2 -step case, we prove that a 2 -step 9 -dimensional Anosov Lie algebra with no abelian factor must have a 3 -dimensional derived algebra and we characterize these Lie algebras in terms of their Pfaffian forms. Among these Lie algebras, we exhibit a family of infinitely many complex non-isomorphic Anosov Lie algebras.