CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
On the Coifman type inequality for the oscillation of the one-sided averages
Autor/es:
M. LORENTE, M.S. RIVEROS, A. DE LA TORRE
Revista:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Referencias:
Año: 2007 vol. 336 p. 577 - 592
ISSN:
0022-247X
Resumen:
In this paper we study the Coifman type estimate for an oscillationoperator related to the one-sided discrete square function, $S^+$.We prove that for any $A^+_infty$ weight $w,$ the $L^p(w)$-norm ofthis operator, and therefore the $L^p(w)$-norm of $S^+$, isdominated by a constant times the $L^p(w)$-norm of the one-sided Hardy-Littlewood maximal function iterated two times.For the $k$-th commutator with a $BMO$ function we show that$k+2$ iterates of the one-sided Hardy-Littlewood maximal functionare sufficient.

