CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Examples of Anosov Lie algebras
Autor/es:
M. MAINKAR, C. WILL
Revista:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Editorial:
AMER INST MATHEMATICAL SCIENCES
Referencias:
Lugar: springfield; Año: 2006 vol. 18 p. 39 - 52
ISSN:
1078-0947
Resumen:
Abstract. We construct new families of examples of (real) Anosov Lie alge-
bras starting with algebraic units. We also give examples of indecomposable
Anosov Lie algebras (not a direct sum of proper Lie ideals) of dimension 13
and 16, and we conclude that for every n ¸ 6 with n 6= 7 there exists an
indecomposable Anosov Lie algebra of dimension n.
indecomposable Anosov Lie algebra of dimension n.
bras starting with algebraic units. We also give examples of indecomposable
Anosov Lie algebras (not a direct sum of proper Lie ideals) of dimension 13
and 16, and we conclude that for every n ¸ 6 with n 6= 7 there exists an
indecomposable Anosov Lie algebra of dimension n.
indecomposable Anosov Lie algebra of dimension n.
We construct new families of examples of (real) Anosov Lie alge-
bras starting with algebraic units. We also give examples of indecomposable
Anosov Lie algebras (not a direct sum of proper Lie ideals) of dimension 13
and 16, and we conclude that for every n ¸ 6 with n 6= 7 there exists an
indecomposable Anosov Lie algebra of dimension n.
indecomposable Anosov Lie algebra of dimension n.
n ¸ 6 with n 6= 7 there exists an
indecomposable Anosov Lie algebra of dimension n.n.

