CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
On module categories over finite-dimensional Hopf algebras
Autor/es:
NICOLÁS ANDRUSKIEWITSCH; JUAN MARTÍN MOMBELLI
Revista:
JOURNAL OF ALGEBRA
Editorial:
Elsevier
Referencias:
Año: 2007 vol. 314 p. 383 - 418
ISSN:
0021-8693
Resumen:
We show that indecomposable exact module categories over the category Rep H of representations of a finite-dimensional Hopf algebra H are classified by left comodule algebras, H-simple from the right and with trivial coinvariants, up to equivariant Morita equivalence. Specifically, any indecomposable exact module category is equivalent to the category of finite-dimensional modules over a left comodule algebra. This is an alternative approach to the results of Etingof and Ostrik. For this, we study the stabilizer introduced by Yan and Zhu and show that it coincides with the internal Hom. We also describe the correspondence of module categories between Rep H and Rep(H^*).

