CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Automorphisms of non-singular nilpotent Lie algebras
Autor/es:
A. KAPLAN, A. TIRABOSCHI
Revista:
JOURNAL OF LIE THEORY
Editorial:
HELDERMANN VERLAG
Referencias:
Lugar: Lemgo; Año: 2012
ISSN:
0949-5932
Resumen:
For a real, non-singular, 2-step nilpotent Lie algebra N , the group  Aut(N)/D , where D is the subgroup acting by dilations on the center, is compact. Its dimension is maximal if N is of Heisenberg type. When the dimension of the center is one or two, this is true if and only if it is of Heisenberg type. It is conjectured that this holds in general. Since a distribution is fat if and only if its symbol non-singular, this has consequences for the Equivalence Problem for geometries based on fat distributions.