CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Lattices, frames and Norton algebras of dual polar graphs
Autor/es:
FERNANDO LEVSTEIN; CAROLINA MALDONADO; DANIEL PENAZZI
Revista:
CONTEMPORARY MATHEMATICS
Editorial:
AMS
Referencias:
Lugar: Providence; Año: 2011 vol. 544 p. 1 - 16
ISSN:
0271-4132
Resumen:
To a dual polar graph (X;E) we associate a graded lattice, map the lattice onto L2(X) and characterize the eigenspaces of the adjacency operator A in L2(X) in terms of this map, each one corresponding to the levels of the lattice. The map also induces in a natural way a tight frame on each eigenspace of A, and we find the constants associated to each tight frame. As an application we give a formula for the product of the Norton algebra of the eigenspace associated to the second largest eigenvalue of A.