CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
Finite-dimensional pointed Hopf algebras with alternating groups are trivial
Autor/es:
ANDRUSKIEWITSCH, NICOLÁS; FERNANDO FANTINO; GRAÑA, MATÍAS; LEANDRO VENDRAMIN
Revista:
ANNALI DI MATEMATICA PURA ED APPLICATA
Editorial:
SPRINGER HEIDELBERG
Referencias:
Lugar: Berlin; Año: 2011 vol. 190 p. 225 - 245
ISSN:
0373-3114
Resumen:
It is shown that Nichols algebras over alternating groups Am (m ≥ 5) are infinite dimensional. This proves that any complex finite dimensional pointed Hopf algebra with group of group-likes isomorphic to Am is isomorphic to the group algebra. In a similar fashion, it is shown that the Nichols algebras over the symmetric groups Sm are all infinite-dimensional, except maybe those related to the transpositions considered in Fomin and Kirillov (Progr Math 172:146?182, 1999), and the class of type (2, 3) in S5. We also show that any simple rack X arising from a symmetric group, with the exception of a small list, collapse, in the sense that the Nichols algebra B(X, q) is infinite dimensional, q an arbitrary cocycle.

