CIEM   05476
CENTRO DE INVESTIGACION Y ESTUDIOS DE MATEMATICA
Unidad Ejecutora - UE
artículos
Título:
A Calderón theorem for the poisson semigroups associated with the Ornstein–Uhlenbeck and Hermite operators
Autor/es:
FLORES, GUILLERMO; VIVIANI, BEATRIZ
Revista:
MATHEMATISCHE ANNALEN
Editorial:
SPRINGER
Referencias:
Año: 2022
ISSN:
0025-5831
Resumen:
We prove that for solutions of the Ornstein-Uhlenbeck or Hermite equations on the upper half-space, in the Poisson setting, the nontangential limits and nontangetial boundedness are essentially equivalent. Also, we obtain that the Poisson integral associated with the Ornstein-Uhlenbeck or Hermite operators of a Borel measure, satisfies the corresponding equation and has nontangential limit at almost every point.