INFIQC   05475
INSTITUTO DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Unidad Ejecutora - UE
artículos
Título:
In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples
Autor/es:
PODIO, N.S.; BARONI, M.V.; LOPEZ-FROILAN R.; PEREZ-RODRIGUEZ ML; WUNDERLIN D.A.; RAMIREZ-MORENO E.; CÁRDENAS C.; SÁNCHEZ-MATA, M.T.
Revista:
Food & Function
Editorial:
Royal Society of Chemistry
Referencias:
Año: 2016 vol. 7 p. 2706 - 2711
ISSN:
2042-6496
Resumen:
Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20?25% of hydroxycinnamic acids and 17?26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.