INFIQC   05475
INSTITUTO DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Unidad Ejecutora - UE
artículos
Título:
Electrochemical sensor for amino acids and albumin based on composites containing carbon nanotubes and copper microparticles
Autor/es:
GUILLERMINA L. LUQUE, NANCY F. FERREYRA AND GUSTAVO A. RIVAS
Revista:
TALANTA
Referencias:
Año: 2006
ISSN:
0039-9140
Resumen:
This work reports on the analytical performance of composites obtained by dispersing copper microparticles and multi-wall carbon nanotubeswithin a mineral oil binder (CNTPE-Cu) for the determination of amino acids and albumin. The strong complexing activity of amino acids towards copper makes possible an important improvement in the sensitivity for the determination of amino acids and albumin. This new electrode permits the highly sensitive amperometric detection of amino acids, even the non-electroactive ones, at very low potentials 0.000 V and physiological pH (phosphate buffer solution pH 7.40). The response of the electrode is highly dependent on the amount of copper, demonstrating the crucial role of the metal in the analytical performance of the sensor. The best analytical performance is obtained for the electrode containing 6.0% w/w copper. The resulting sensor shows a fast response (7 s) and a sensitivity that depends on the nature of the amino acid. The electrode surface demonstrates an excellent resistance to surface fouling, with R.S.D. of 4% for the sensitivities of 10 successive calibration plots. Albumin is determined with CNTPE-Cu using a protocol based on the accumulation of the protein for 10 min at −0.100V, followed by the square-wave voltammetric analysis. The quantification of albumin concentration in lyophilized control serum gives excellent agreement with the classical spectrophotometric methodology and with the value informed for the supplier.