INFIQC   05475
INSTITUTO DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Unidad Ejecutora - UE
artículos
Título:
Carbocations from oxidized metabolites of benzo[a]anthracene: a computational study of their methylated and fluorinated derivatives and guanine adducts.
Autor/es:
BOROSKY, GABRIELA L.; LAALI, KENNETH K.
Revista:
CHEMICAL RESEARCH IN TOXICOLOGY (WASHINGTON)
Editorial:
American Chemical Society
Referencias:
Lugar: Washington; Año: 2006 vol. 19 p. 899 - 907
ISSN:
0893-228X
Resumen:
Structure-reactivity relationships and substituent effects on carbocation stability in benzo[a]anthracene (BA) derivatives have been studied computationally at the B3LYP/6-31G* and MP2/6-31G** levels. Bay-region carbocations are formed by O-protonation of the 1,2-epoxides in barrierless processes. This process is energetically more favored as compared to carbocation generation via zwitterion formation/O-protonation, via single electron oxidation to generate a radical cation, or via benzylic hydroxylation. Relative carbocation stabilities were determined in the gas phase and in water as solvent (PCM method). Charge delocalization mode in the BA carbocation framework was deduced from NPA-derived changes in charges, and substitution by methyl or fluorine was studied at different positions selected on basis of the carbocation charge density. A bay-region methyl group produces structural distortion with consequent deviation from planarity of the aromatic system, which destabilizes the epoxide, favoring ring opening. Whereas fluorine substitution at sites bearing significant positive charge leads to carbocation stabilization by fluorine p-p back-bonding, a fluorine atom at a ring position which presented negative charge density leads to inductive destabilization. Methylated derivatives are less sensitive to substituent effects as compared to the fluorinated analogues. Although the solvent decreases the exothermicity of the epoxide ring opening reactions due to greater stabilization of the reactants, it provokes no changes in relative reactivities. Relative energies in the resulting bay-region carbocations are examined taking into account the available biological activity data on these compounds. In selected cases, quenching of bay-region carbocations was investigated by analyzing relative energies (in the gas phase and in water) and geometries of their guanine adducts formed via covalent bond formation with the exocyclic amino group and with the N-7.