IMBIV   05474
INSTITUTO MULTIDISCIPLINARIO DE BIOLOGIA VEGETAL
Unidad Ejecutora - UE
artículos
Título:
Phylogenetic relationships of Deprea: New insights into the evolutionary history of physaloid groups
Autor/es:
BARBOZA, GE; DEANNA, R; CARRIZO GARCÍA, C
Revista:
MOLECULAR PHYLOGENETICS AND EVOLUTION
Editorial:
ACADEMIC PRESS INC ELSEVIER SCIENCE
Referencias:
Año: 2018 vol. 119 p. 71 - 80
ISSN:
1055-7903
Resumen:
Deprea is the genus with the second highest species richness in tribe Physalideae (Solanaceae) and comprises 50 species that are mainly distributed in the Andes of South America. The taxonomy of Deprea has been unstable after controversial hypotheses about its position and circumscription. Additionally, biogeographical inferences are only based on observations of the restricted area of distribution of some species and no ancestral area estimation have been performed. Here, we present a phylogenetic analysis and an ancestral area reconstruction of Deprea in order to establish its circumscription, resolve its position within Physalideae, and reconstruct its biogeographical history. Phylogenetic analyses were conducted using Maximum Likelihood and Bayesian approaches. Forty-three Deprea species and 26 related taxa were sampled for three DNA markers (psbA-trnH, ITS, and waxy). A Bayesian binary MCMC model was applied in order to infer ancestral areas. Deprea is resolved as a strongly supported monophyletic group according to its current circumscription and is placed within subtribe Withaninae of Physalideae. The phylogenetic relationships enabled us to solve taxonomic problems including the rejection and acceptance of previous synonyms. The most probable ancestral area for Deprea is the Northern Andes of South America and the Amotape-Huancabamba zone. Our phylogeny provides increased resolution and support for the current position and circumscription of Deprea. Better resolution of interspecific relationships was also obtained, although some affinities remain unclear. The phylogenetic and ancestral area reconstructions provide a framework for addressing taxonomic problems and investigating new evolutionary questions.