IMBIV   05474
INSTITUTO MULTIDISCIPLINARIO DE BIOLOGIA VEGETAL
Unidad Ejecutora - UE
artículos
Título:
Growth response, phosphorus content and root colonization of Polylepis australis Bitt. seedlings inoculated with different soil types
Autor/es:
SOTERAS, F.; RENISON, D.; BECERRA ALEJANDRA G.
Revista:
NEW FORESTS
Editorial:
SPRINGER
Referencias:
Lugar: Berlin; Año: 2013 vol. 44 p. 577 - 589
ISSN:
0169-4286
Resumen:
Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been highly recommended. Greenhouse bioassays were set up to determine the influence of three different soils on growth and phosphorous nutrition of Polylepis australis seedlings. Soils were collected from a grassland, a rare mature forest and a forest degraded due to repeated fires.Weidentified the arbuscular mycorrhizal fungi (AMF) present in the three soils and after 12 months we harvested the seedlings to evaluate root and shoot biomass, plant P content and root colonization by native AMF and dark septate endophytes (DSE). The soil inocula contained 26 AMF morphospecies. Grassland inoculum showed the highest AMF richness, and mature forest showed a different AMF community assembly from grassland and degraded forest inocula. Root biomass and root colonization were highest in seedlings inoculated with mature forest soil, meanwhile shoot biomass and plant P content were similar between all treatments. AMF colonization correlated negatively with DSE and root biomass was negatively correlated with DSE colonization, thus these fungal symbionts could be competing for resources. Our results indicate that AMF inoculum from the mature forest stand has the potential to improve P. australis performance, probably due to the dominance of Glomeraceae and Acaulosporaceae families. However, other soil microorganisms could be together with AMF in the natural inocula, affecting the growth response of P. australis seedlings. Future studies evaluating the effect of these inocula under field conditions should be carried out.