CIQUIBIC   05472
CENTRO DE INVESTIGACIONES EN QUIMICA BIOLOGICA DE CORDOBA
Unidad Ejecutora - UE
artículos
Título:
Algorithmic Learning for Auto-deconvolution and Molecular Networking of GC-MS Data
Autor/es:
ALBARRACÍN ORIO A; Y COLABORADORES; ASKENOV AA; PETRAS D; SMANIA AM
Revista:
NATURE BIOTECHNOLOGY
Editorial:
NATURE PUBLISHING GROUP
Referencias:
Lugar: Londres; Año: 2021
ISSN:
1087-0156
Resumen:
We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography?mass spectrometry (GC?MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC?MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.