INIMEC - CONICET   05467
INSTITUTO DE INVESTIGACION MEDICA MERCEDES Y MARTIN FERREYRA
Unidad Ejecutora - UE
artículos
Título:
ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface
Autor/es:
MONTELEONE M., GONZALEZ WUSENER A., BURDISSO J., CONDE C., CACERES A., ARREGUI CO
Revista:
PLOS ONE
Editorial:
PUBLIC LIBRARY SCIENCE
Referencias:
Lugar: San Francisco; Año: 2012 vol. 7 p. 1 - 13
ISSN:
1932-6203
Resumen:
PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.