INIMEC - CONICET   05467
INSTITUTO DE INVESTIGACION MEDICA MERCEDES Y MARTIN FERREYRA
Unidad Ejecutora - UE
artículos
Título:
Role of mu, delta and kappa opioid receptors in ethanol-reinforced operant responding in infant rats
Autor/es:
MIRANDA MORALES RS; SPEAR NE; NIZHNIKCOV ME; MOLINA JC; ABATE P
Revista:
BEHAVIOURAL BRAIN RESEARCH
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 2012 vol. 234 p. 267 - 277
ISSN:
0166-4328
Resumen:
We recently observed that naloxone, a non-specific opioid antagonist, attenuated operant responding to ethanol in infant rats. Through the use of an operant conditioning technique, we aimed to analyze the specific participation of mu, delta, and kappa opioid receptors on ethanol reinforcement during the second postnatal week. In Experiment 1, infant rats (PDs 14-17) were trained to obtain 5, 7.5, 10, or 15% ethanol, by operant nose-poking. Experiment 2 tested blood ethanol levels (BELs) attained by operant behavior. In Experiment 3, at PDs16-18, rats received CTOP (mu antagonist: 0.1 or 1.0 mg/kg), naltrindole (delta antagonist: 1.0 or 5.0 mg/kg) or saline before training. In Experiment 4, rats received nor-binaltorphimine (kappa antagonist: 10.0 or 30.0 mg/kg, a single injection after completion of PD15 operant training), spiradoline mesylate (kappa agonist: 1.0 or 5.0 mg/kg; at PDs16-18) or saline (PDs16-18), before the conditioning. Experiment 5 and 6 assessed possible side effects of opioid drugs in locomotor activity (LA) and conditioned taste aversion (CTA). Ethanol at 7.5 and 10% promoted the highest levels of operant responding. BELs were 12–15 mg/dl. In Experiment 3 naltrindole (dose response effect) and CTOP (the lowest dose) were effective in decreasing operant responding. Nor-binaltorphimine at 10.0 mg/kg and spiradoline at 5.0 mg/kg also blocked ethanol responding. The effects of opioid drugs on ethanol reinforcement cannot be explained by effects on LA or CTA. Even though particular aspects of each opioid receptor require further testing, a fully functional opioid system seems to be necessary for ethanol reinforcement, during early ontogeny.