INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
artículos
Título:
The importance of 2D aggregates on the antimicrobial resistance of Staphylococcus aureus sessile bacteria
Autor/es:
SCHILARDI, P.L; MIÑAN, A; FERNANDEZ LORENZO DE MELE, M
Revista:
MATERIALS SCIENCE & ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2016 vol. 61 p. 199 - 206
ISSN:
0928-4931
Resumen:
Biofilms formed on implanted devices are difficult to eradicate. Adhesion mechanism, high bacterial density, aggregation, induction of persisters and stressed bacteria are some of the factors considered when the antimicrobial resistance of these biofilms is analysed. The aim of this work was to provide an alternative approach to the understanding of this issue by using a specially designed experimental set up that includes the use of microstructured (MS) surfaces (potential inhibitors of bacterial aggregation) in combination with antimicrobial agents (streptomycin and levofloxacin) against Staphyloccocus aureus attached cells. Biofilms formed con smooth surfaces were used as plain controls (biofilmed-PC) characterized by the formation of dense 2D bacterial aggregates. Results showed bacterial persistence when streptomycin or levofloxacin were applied to PC-biofilms. The antimicrobial activity of both antibiotics was enhanced when bacteria were attached on MS, where single cells or small aggregates were observed. Thus, dense 2D aggregates of bacteria seem to be crucial as a required previous stage to develop the antimicrobial resistance.