INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
artículos
Título:
Gas phase formation of dense alkanethiol layers on GaAs(110)
Autor/es:
LUIS M. RODRIGUEZ; J. ESTEBAN GAYONE; ESTEBAN A. SANCHEZ; OSCAR GRIZZI; BARBARA BLUM; ROBERTO C. SALVAREZZA; LUAN XI; WOON MING LAU
Revista:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Editorial:
American Chemical Society
Referencias:
Año: 2007 vol. 129 p. 7807 - 7813
ISSN:
0002-7863
Resumen:
We present a study of the growth and thermal stability of hexanethiol (C6) films on GaAs(110) by direct recoil spectroscopy with time-of-flight analysis. We compare our results with the better known case of C6 adsorption on Au(111). In contrast to the two-step adsorption kinetics observed for Au surfaces after lengthy exposures, data for C6 adsorption on the GaAs(110) surface are consistent with the formation of a single dense phase of C6 molecules at lower exposures. On the contrary, in solution preparation, dense phases can only be obtained on GaAs for long alkanethiols and after lengthy immersions. The C6 layer has a first desorption peak at 325 K, where partial desorption of the alkanethiol molecules takes place. Fits to the desorption curves result in a 1 eV adsorption energy, in agreement with a chemisorption process. Increasing the temperature to 500 K results in the S-C bond scission with only S remaining on the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption. the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption. by direct recoil spectroscopy with time-of-flight analysis. We compare our results with the better known case of C6 adsorption on Au(111). In contrast to the two-step adsorption kinetics observed for Au surfaces after lengthy exposures, data for C6 adsorption on the GaAs(110) surface are consistent with the formation of a single dense phase of C6 molecules at lower exposures. On the contrary, in solution preparation, dense phases can only be obtained on GaAs for long alkanethiols and after lengthy immersions. The C6 layer has a first desorption peak at 325 K, where partial desorption of the alkanethiol molecules takes place. Fits to the desorption curves result in a 1 eV adsorption energy, in agreement with a chemisorption process. Increasing the temperature to 500 K results in the S-C bond scission with only S remaining on the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption. the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption. We present a study of the growth and thermal stability of hexanethiol (C6) films on GaAs(110) by direct recoil spectroscopy with time-of-flight analysis. We compare our results with the better known case of C6 adsorption on Au(111). In contrast to the two-step adsorption kinetics observed for Au surfaces after lengthy exposures, data for C6 adsorption on the GaAs(110) surface are consistent with the formation of a single dense phase of C6 molecules at lower exposures. On the contrary, in solution preparation, dense phases can only be obtained on GaAs for long alkanethiols and after lengthy immersions. The C6 layer has a first desorption peak at 325 K, where partial desorption of the alkanethiol molecules takes place. Fits to the desorption curves result in a 1 eV adsorption energy, in agreement with a chemisorption process. Increasing the temperature to 500 K results in the S-C bond scission with only S remaining on the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption. the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption. -C bond scission with only S remaining on the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption.