INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
artículos
Título:
Dynamic Elasticity of Cubic Diamond
Autor/es:
M.J. BUCKNUM; EDUARDO ALBERTO CASTRO
Revista:
JOURNAL OF MATHEMATICAL CHEMISTRY
Referencias:
Año: 2006 vol. 40 p. 341 - 347
ISSN:
0259-9791
Resumen:
Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be near 1 TPa, at modest bond length deformations of about 0.1 Å. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along <111> directions of the structural unit cell.