INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
artículos
Título:
Quantitative Structure−Activity Relationships of Mosquito Larvicidal
Autor/es:
GUSTAVO PASQUALE; GUSTAVO ROMANELLI; JUAN CARLOS AUTINO; JAVIER GARCIA; ERLINDA DEL VALLE ORTIZ; PABLO DUCHOWICZ
Revista:
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Editorial:
AMER CHEMICAL SOC
Referencias:
Lugar: Washington; Año: 2012 vol. 60 p. 692 - 697
ISSN:
0021-8561
Resumen:
The mosquito larvicidal activities of a series of chalcones and some derivatives were subjected to a quantitative structure−activity relationship (QSAR) study, using more than a thousand constitutional, topological, geometrical, and electronic molecular descriptors calculated with Dragon software. The larvicidal activity values for 28 active compounds of the series were predicted, showing in general a good approximation to the experimental values found in the literature. Chalcones having one or both electron-rich rings showed high toxicity. However, the activity of chalcones was reduced by electron-withdrawing groups, and this was roughly diminished by derivatization of the carbonyl group. A set of six chalcones being structurally similar to some of the active ones, with a still unknown larvicidal activity, were prepared. Their activity values were predicted by applying the developed QSAR models, showing that two chalcones of such set, both 32 and 34, were expected to be highly active.−activity relationship (QSAR) study, using more than a thousand constitutional, topological, geometrical, and electronic molecular descriptors calculated with Dragon software. The larvicidal activity values for 28 active compounds of the series were predicted, showing in general a good approximation to the experimental values found in the literature. Chalcones having one or both electron-rich rings showed high toxicity. However, the activity of chalcones was reduced by electron-withdrawing groups, and this was roughly diminished by derivatization of the carbonyl group. A set of six chalcones being structurally similar to some of the active ones, with a still unknown larvicidal activity, were prepared. Their activity values were predicted by applying the developed QSAR models, showing that two chalcones of such set, both 32 and 34, were expected to be highly active.