CIG   05423
CENTRO DE INVESTIGACIONES GEOLOGICAS
Unidad Ejecutora - UE
artículos
Título:
The Paleosurface on the Paso del Sapo volcanic rocks, Chubut, Argentina
Autor/es:
AGUILERA, YOLANDA; ARAGON, E.; CARRETERO, S
Revista:
GEOCIENCIAS
Editorial:
UNESP
Referencias:
Lugar: Sao Paulo; Año: 2010 vol. 29 p. 479 - 486
ISSN:
0101-9082
Resumen:
The Deseado and Somon-Cura (or Northern Patagonian) massifs in Patagonia are composed of basement exposed rocks and one of the largest siliceous provinces in the world, with a volume of 235,000 km3, according to Pankhurst et al. (1995). This Middle Jurassic volcanism has an age of 43 Ma; its age decreases regularly from ENE to WSW along Patagonia. These volcanic episodes preceded the opening of the Atlantic Ocean and they correspond to a wide extensional province covering a continental, intraplate region. Most of the Mesozoic topographic features in both massifs are related to Jurassic volcanism and a NE fracture system. From Jurassic times to the late Cretaceous, the ignimbrite plateau and the stratovolcanoes of the Patagonian Mesozoic belt have been exposed to an erosion process bringing the massif levelled surfaces to a planation surface. The late Cretaceous sediments consist of a thin, scattered unit which is distributed on the planation surfaces in the Somon-Cura Massif. A remnant of this buried planation surface can be observed between Paso del Sapo and Piedra Parada, along the Río Chubut valley. A belt of stratovolcanoes from the Middle Jurassic (represented by the Alvar Fm.), consisting on lavas, autobreccias and andesitic dykes, was eroded to a sub horizontal flat, preserving a mantle of regolith which is the product of the underlying vulcanite alteration and it is overlain by quartz sandstones of the Upper Cretaceous Paso del Sapo Fm. This stratigraphic relationship limits the age of the planation surfaces to Late Mesozoic times. Thus, this planation surface can be correlated with the Gondwanic planation surface of Lester C. King. Early Tertiary plate tectonics produced the exhumation of the planation surfaces buried under their own regolith, reactivating erosion surfaces and small basins.3, according to Pankhurst et al. (1995). This Middle Jurassic volcanism has an age of 43 Ma; its age decreases regularly from ENE to WSW along Patagonia. These volcanic episodes preceded the opening of the Atlantic Ocean and they correspond to a wide extensional province covering a continental, intraplate region. Most of the Mesozoic topographic features in both massifs are related to Jurassic volcanism and a NE fracture system. From Jurassic times to the late Cretaceous, the ignimbrite plateau and the stratovolcanoes of the Patagonian Mesozoic belt have been exposed to an erosion process bringing the massif levelled surfaces to a planation surface. The late Cretaceous sediments consist of a thin, scattered unit which is distributed on the planation surfaces in the Somon-Cura Massif. A remnant of this buried planation surface can be observed between Paso del Sapo and Piedra Parada, along the Río Chubut valley. A belt of stratovolcanoes from the Middle Jurassic (represented by the Alvar Fm.), consisting on lavas, autobreccias and andesitic dykes, was eroded to a sub horizontal flat, preserving a mantle of regolith which is the product of the underlying vulcanite alteration and it is overlain by quartz sandstones of the Upper Cretaceous Paso del Sapo Fm. This stratigraphic relationship limits the age of the planation surfaces to Late Mesozoic times. Thus, this planation surface can be correlated with the Gondwanic planation surface of Lester C. King. Early Tertiary plate tectonics produced the exhumation of the planation surfaces buried under their own regolith, reactivating erosion surfaces and small basins.