CIC   05421
CENTRO DE INVESTIGACIONES CARDIOVASCULARES "DR. HORACIO EUGENIO CINGOLANI"
Unidad Ejecutora - UE
artículos
Título:
Increased intracellular Ca2+ and SR Ca2+ load contribute to arrhythmias after acidosis in rat heart. Role of Ca2+-calmodulin dependent protein kinase II.
Autor/es:
SAID M; BECERRA R; PALOMEQUE J; RINALDI G; KAETZEL MA; DIAZ-SYLVESTER PL; COPELLO JA; DEDMAN JR; MUNDI√ĎA-WEILENMANN C; VITTONE L; MATTIAZZI A
Revista:
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY
Editorial:
American Physiological Society
Referencias:
Año: 2008 vol. 295 p. 1669 - 1683
ISSN:
0363-6135
Resumen:
Returning to normal pH after acidosis, similar to reperfusion after ischemia, is prone to arrhythmias. The type and mechanisms of these arrhythmias have never been explored and were the aim of the present work. Langendorff-perfused rat/mice hearts and rat-isolated myocytes were subjected to respiratory acidosis and then returned to normal pH. Monophasic action potentials and left ventricular developed pressure were recorded. The removal of acidosis provoked ectopic beats that were blunted by 1 muM of the CaMKII inhibitor KN-93, 1 muM thapsigargin, to inhibit sarcoplasmic reticulum (SR) Ca(2+) uptake, and 30 nM ryanodine or 45 muM dantrolene, to inhibit SR Ca(2+) release and were not observed in a transgenic mouse model with inhibition of CaMKII targeted to the SR. Acidosis increased the phosphorylation of Thr(17) site of phospholamban (PT-PLN) and SR Ca(2+) load. Both effects were precluded by KN-93. The return to normal pH was associated with an increase in SR Ca(2+) leak, when compared with that of control or with acidosis at the same SR Ca(2+) content. Ca(2+) leak occurred without changes in the phosphorylation of ryanodine receptors type 2 (RyR2) and was blunted by KN-93. Experiments in planar lipid bilayers confirmed the reversible inhibitory effect of acidosis on RyR2. Ectopic activity was triggered by membrane depolarizations (delayed afterdepolarizations), primarily occurring in epicardium and were prevented by KN-93. The results reveal that arrhythmias after acidosis are dependent on CaMKII activation and are associated with an increase in SR Ca(2+) load, which appears to be mainly due to the increase in PT-PLN.