CENEXA   05419
CENTRO DE ENDOCRINOLOGIA EXPERIMENTAL Y APLICADA
Unidad Ejecutora - UE
artículos
Título:
Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.
Autor/es:
H.D. HERCE; A.E. GARCIA; J. LITT; R.S. KANE; P. MARTIN; N. ENRIQUE; A. REBOLLEDO; V. MILESI
Revista:
BIOPHYSICAL JOURNAL
Editorial:
CELL PRESS
Referencias:
Lugar: United States; Año: 2009 vol. 97 p. 1917 - 1925
ISSN:
0006-3495
Resumen:
Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.