IQUIR   05412
INSTITUTO DE QUIMICA ROSARIO
Unidad Ejecutora - UE
artículos
Título:
Antineoplastic activity of products derived from cellulose-containing materials: levoglucosenone and structurally-related derivatives as new alternatives for breast cancer treatment
Autor/es:
GIRI, GERMAN FRANCISCO; AMIGO, NATALIA LORELEY; SPANEVELLO, ROLANDO ÁNGEL; CAMMARATA, AGOSTINA; BECHIS, ANDRÉS; TODARO, LAURA BEATRIZ; DELBART, DAMIAN IGNACIO; BAREÑO, LIZETH ARIZA; SUAREZ, ALEJANDRA GRACIELA; URTREGER, ALEJANDRO JORGE
Revista:
INVESTIGATIONAL NEW DRUGS
Editorial:
SPRINGER
Referencias:
Lugar: Berlin; Año: 2021 vol. 40 p. 30 - 41
ISSN:
0167-6997
Resumen:
Breast cancer is the leading cause of cancer death among women worldwide. For this reason, the development of new therapies is still essential. In this work we have analyzed the antitumor potential of levoglucosenone, a chiral building block derived from the pyrolysis of cellulose-containing materials such as soybean hulls, and three structurally related analogues. Employing human and murine mammary cancer models, we have evaluated the effect of our compounds on cell viability through MTS assay, apoptosis induction by acridine orange/ethidium bromide staining and/or flow cytometry and the loss of mitochondrial potential by tetramethylrhodamine methyl ester staining. Autophagy and senescence induction were also evaluated by Western blot and β-galactosidase activity respectively. Secreted metalloproteases activity was determined by quantitative zymography. Migratory capacity was assessed by wound healing assays while invasive potential was analyzed using Matrigel-coated transwell chambers. In vivo studies were also performed to evaluate subcutaneous tumor growth and experimental lung colonization. All compounds impaired in vitro proliferation with IC50 values in a range of low micromolar. Apoptosis was identified as the main mechanism responsible for the reduction of monolayer cell content induced by the compounds without detecting modulations of autophagy or senescence processes. Two of the four compounds (levoglucosenone and its brominated variant) were able to modulate in vitro events associated with tumor progression, such as migratory potential, invasiveness, and proteases secretion. Furthermore, tumor volume and metastatic spread were significantly reduced in vivo after the treatment these two compounds. Here, we could obtain from soybean hulls, a material with almost no commercial value, a variety of chemical compounds useful for breast cancer treatment.