INTEC   05402
INSTITUTO DE DESARROLLO TECNOLOGICO PARA LA INDUSTRIA QUIMICA
Unidad Ejecutora - UE
artículos
Título:
Sliding of drops on mesoporous thin films
Autor/es:
BERLI, C. L. A.; MERCURI, M.; MERCURI, M.; GIMENEZ, R.; BELLINO, M. G.; GIMENEZ, R.; BELLINO, M. G.; BERLI, C. L. A.
Revista:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Editorial:
ROYAL SOC CHEMISTRY
Referencias:
Año: 2020 vol. 22 p. 5915 - 5919
ISSN:
1463-9076
Resumen:
There is great interest in developing surfaces with enhanced properties for the sliding of liquid droplets. Here we show that both water and oil droplets placed on mesoporous thin film surfaces slide at relatively small tilt angles with respect to non-porous surfaces of the same material. The effect arises from a particular soft pinning at the contact line, which is a consequence of the fact that sessile droplets are partially "floating" onto a locally self-imbibed mesoporous film. Therefore, droplets present a reduced sliding angle and an enhanced sliding velocity in comparison to droplets on nonporous surfaces of the same material. The formed droplet-substrate interface is different to those observed on superhydrophobic or oil-infused surfaces, and involves a particular sliding dynamic. These findings would help to improve technical developments that require the precise handling of droplets mobility, whose interest span from chemical and biological assays in open microfluidic platforms to applications in energy and the environment.