INTEC   05402
INSTITUTO DE DESARROLLO TECNOLOGICO PARA LA INDUSTRIA QUIMICA
Unidad Ejecutora - UE
artículos
Título:
New semi-pilot-scale reactor to study the photocatalytic inactivation of phages contained in aerosol
Autor/es:
ALFANO, ORLANDO MARIO; BRIGGILER MARCÓ, MARIÁNGELES; QUIBERONI, ANDREA DEL LUJÁN; NEGRO, ANTONIO CARLOS
Revista:
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Editorial:
SPRINGER HEIDELBERG
Referencias:
Año: 2018 vol. 25 p. 21385 - 21392
ISSN:
0944-1344
Resumen:
The aim of this work was to design and build a photocatalytic reactor (UV-A/TiO2) to study the inactivation of phages contained in bioaerosols, which constitute the main dissemination via of phages in industrial environments. The reactor is a close system with recirculation that consists of a stainless steel camera (cubic form, side of 60 cm) in which air containing the phage particles circulates and an acrylic compartment with 6 borosilicate plates covered with TiO2. The reactor is externally illuminated by 20 UV-A lamps. Both compartments are connected by a fan to facilitate the sample circulation. Samples are injected into the camera using two piston nebulizers working in series whereas several methodologies for sampling (impinger/syringe, sampling on photocatalytic plates and impact of air on slide) were assayed. The reactor set up was carried out using phage B1 (Lb. plantarum) and assays demonstrated a decrease of phage counts of 2.7 log orders after 1 h of photocatalytic treatment. Photonic efficiencies of inactivation were assessed by phage sampling on the photocatalytic plates or by impact of air on a glass slide at the photocatalytic reactor exit. Efficiencies of the same order of magnitude were observed using both sampling methods. This study demonstrated that the designed photocatalytic reactor is effective to inactivate phage B1 (Lb. plantarum) contained in bioaerosols.