CIOP   05384
CENTRO DE INVESTIGACIONES OPTICAS
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
STUDY OF SILVER COLLOIDS PLASMONIC CHARACTERISTICS OBTAINED BY ULTRAFAST LASER ABLATION IN ORGANIC SOLVENTS
Autor/es:
D. MUÑETÓN ARBOLEDA; J. M. J. SANTILLÁN; D. C. SCHINCA; L. B. SCAFFARDI
Lugar:
Pucón, Región de Araucaria
Reunión:
Conferencia; IX Conferencia RIAO/OPTILAS 2016, Pucón, Región de la Araucanía, Chile, 21 al 25 de Noviembre de 2016; 2016
Institución organizadora:
RIAO/OPTILAS
Resumen:
The interest in silver nanoparticles (AgNPs) has continuously grown in recent years, driven by the particularity of their physical and chemical properties for applications in different fields of science and technology [1-4].The control of the size, shape, and stability is a very important issue in AgNPs synthesis. The most diffused methods are based on the chemical reduction of Ag ions in solutions and give good results in terms of the final size and shape of the AgNPs. Nevertheless, this type of synthesis always needs surfactants,and other chemical products, which are present at the end of the preparation [5], causing incompatibility of the colloids for specific applications.The generation of free metal NPs of chemicals has given rise to an active area of research re-lated to the synthesis of NPs in liquid media by laser ablation from a solid metal disc [6-8].This paper studies the plasmonic characteristics of the absorption spectra of Ag colloidal suspensions synthesized by ultrashort pulsed laser ablation, from a disk of Ag immersed in organic media at different energies.Moreover, the stability of the NPs is analyzed through time of the plasmon resonance posi-tion and FWHM.Keywords: Plasmonics; Nanoparticles; Laser ablationRIAO-OPTILAS Topic Code: MaterialsReferences[1] C. Sonnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos, Nat. Biotechnol. 23, 741-745 (2005).[2] T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby, I. Bar-Joseph, Nature 436, 677-680 (2005).[3] A. D. McFarland, R. P. Van Duyne, Nano Lett. 3, 1057-1062 (2003).[4] S. K. Gogoi, P. Gopinath, A. Paul, A. Ramesh, S. S. Ghosh, A. Chattopadhyay, Langmuir 22, 9322-9328 (2006).[5] C. E. Hoppe, M. Lazzari, I. P. Blanco, M. A. López-Quintela, Langmuir 22, 7027-7034 (2006).[6] J. M. J. Santillán, F. A. Videla, M. B. Fernández van Raap, D. C. Schinca, L. B. Scaffardi, J. Appl. Phys. 113, 134305 (9pp) (2013).[7] J. M. J. Santillán, M. B. Fernández van Raap, P. Mendoza Zélis, D. Coral, D. Muraca, D. C. Schinca, L. B. Scaffardi, J Nanopart Res 17, (2015).[8] D. Muñetón Arboleda, J. M. J. Santillán, L. J. Mendoza Herrera, M. B. Fernández van Raap, P. Mendoza Zélis, D. Muraca, D. C. Schinca, L. B. Scaffardi, J. Phys. Chem. C 119, 13184-13193 (2015).