CETMIC   05378
CENTRO DE TECNOLOGIA DE RECURSOS MINERALES Y CERAMICA
Unidad Ejecutora - UE
artículos
Título:
Sunflower Oil Bleaching by Adsorption onto Acid-Activated Bentonite
Autor/es:
E.L.FOLETTO, G.C. COLAZZO, C. VOLZONE, L.M. PORTO
Revista:
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING
Editorial:
BRAZILIAN SOC CHEMICAL ENG
Referencias:
Lugar: Brasil; Año: 2011 vol. 28 p. 169 - 174
ISSN:
0104-6632
Resumen:
Two bentonite clays with different mineralogical compositions from Mendoza, Argentine, were activated with H2SO4 solutions of 4 and 8 N at 90°C for 3.5 hours. This treatment affected clay structural properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays. 2SO4 solutions of 4 and 8 N at 90°C for 3.5 hours. This treatment affected clay structural properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays.