IBYME   02675
INSTITUTO DE BIOLOGIA Y MEDICINA EXPERIMENTAL
Unidad Ejecutora - UE
artículos
Título:
TURNING ‘SWEET’ ON IMMUNITY: GALECTIN-GLYCAN INTERACTIONS IN IMMUNE TOLERANCE AND INFLAMMATION
Autor/es:
GABRIEL A RABINOVICH; MARTA A TOSCANO
Revista:
NATURE REVIEWS IMMUNOLOGY
Editorial:
NATURE PUBLISHING GROUP
Referencias:
Año: 2009 vol. 9 p. 338 - 352
ISSN:
1474-1733
Resumen:
Abstract | The function of deciphering the biological information encoded by the glycome, which is the entire repertoire of complex sugar structures expressed by cells and tissues, is assigned in part to endogenous glycan-binding proteins or lectins. Galectins, a family of animal lectins that bind N‑acetyllactosamine-containing glycans, have many roles in diverse immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family N‑acetyllactosamine-containing glycans, have many roles in diverse immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family