IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Local Lidskii's theorems for unitarily invariant norms
Autor/es:
MASSEY, PEDRO G.; RIOS, NOELIA B.; STOJANOFF, DEMETRIO
Revista:
LINEAR ALGEBRA AND ITS APPLICATIONS
Editorial:
ELSEVIER SCIENCE INC
Referencias:
Año: 2018 vol. 557 p. 34 - 34
ISSN:
0024-3795
Resumen:
LidskiiĀ“s additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that LidskiiĀ“s inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.