IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Multiloop realization of extended affine Lie algebras and Lie tori
Autor/es:
B. ALLISON, S. BERMAN, J. FAULKNER. AND A. PIANZOLA
Revista:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Editorial:
AMER MATHEMATICAL SOC
Referencias:
Año: 2009 vol. 361 p. 4807 - 4807
ISSN:
0002-9947
Resumen:
An important theorem in the  theory of infinite dimensional Lie algebras states that any affine Kac-Moody algebra can be realized (that is to say constructed explicitly) using loop algebras. In this paper, we consider the corresponding problem for a class of Lie algebras called                 extended  affine Lie algebras (EALAs) that generalize affine algebras.EALAs occur in families that are constructed from centreless Lie tori, so the realization problem for EALAs reduces to the realization problem for centreless Lie tori.  We show that all but one family of centreless Lie tori can be realized using multiloop algebras (in place of loop algebras). We also obtain necessary and sufficient for two centreless Lie tori realized in this way to be isotopic, a relation that corresponds to isomorphism of the corresponding families of EALAs.