IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Geometric significance of Toeplitz kernels
Autor/es:
CHIUMIENTO EDUARDO; ANDRUCHOW ESTEBAN; LAROTONDA GABRIEL
Revista:
JOURNAL OF FUNCTIONAL ANALYSIS
Editorial:
ACADEMIC PRESS INC ELSEVIER SCIENCE
Referencias:
Lugar: Amsterdam; Año: 2018 vol. 275 p. 329 - 329
ISSN:
0022-1236
Resumen:
Let L^2  be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L^2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections.