IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Sampling formulae and optimal factorizations of projections
Autor/es:
JORGE ANTEZANA, GUSTAVO CORACH
Revista:
Sampling Theory in Signal and Image Processing
Referencias:
Año: 2008 vol. 7 p. 313 - 313
ISSN:
1530-6429
Resumen:
Let $mathcal{H}$ be a Hilbert space, $mathcal{W}$ a closed subspace of $mathcal{H}$ and $Q$ a (linear bounded) projection from $mathcal{H}$ onto $mathcal{W}$ with null space $mathcal{M}^ot$. We study decompositions like $Qf=sum_{ninN}pint{f,,h_n}f_n,$ where ${f_n}_{ninmathbb{N}}$ and ${h_n}_{ninmathbb{N}}$ are frames for the subspaces $mathcal{W}$ and $mathcal{M}$, respectively. This type of decompositions corresponds to sampling formulae. By considering the synthesis operator $F$ (resp. $H$) of the sequence ${f_n}_{ninmathbb{N}}$ (resp. ${h_n}_{ninmathbb{N}}$), the formula above can be expressed as  the factorization $Q=FH^*$. We study different properties of these factorizations and decompositions of oblique and orthogonal projections. Several characterizations of these decompositions are presented. By means of an operator inequality for positive operators, we get a result which minimizes the norm of $F - H$. }