IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups
Autor/es:
ELONA AGORA; JORGE ANTEZANA; CARLOS CABRELLI
Revista:
ADVANCES IN MATHEMATICS
Editorial:
ACADEMIC PRESS INC ELSEVIER SCIENCE
Referencias:
Lugar: Amsterdam; Año: 2015 vol. 285 p. 454 - 454
ISSN:
0001-8708
Resumen:
We prove the existence of sampling sets and interpolation sets near the critical density, in Paley Wiener spaces of a locally compact abelian (LCA) group G. This solves a problem left by Gröchenig, Kutyniok, and Seip in 2008. To achieve this result, we prove the existence of universal Riesz bases of characters for L2(Ω), provided that the relatively compact subset Ω of the dual group of G satisfies a multi-tiling condition. This last result generalizes Fuglede?s theorem, and extends to LCA groups setting recent constructions of Riesz bases of exponentials in bounded sets of Rd.