IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
The allometric model in chronic myocardial infarction
Autor/es:
MARIA P BONOMINI; PEDRO D. ARINI; GERMÁN E GONZALEZ; BRUNO BUCHHOLZ; MAX E. VALENTINUZZI
Revista:
THEORETICAL BIOLOGY AND MEDICAL MODELLING
Editorial:
BIOMED CENTRAL LTD
Referencias:
Lugar: Londres; Año: 2012 vol. 9 p. 1 - 1
ISSN:
1742-4682
Resumen:
Background: An allometric relationship between different electrocardiogram (ECG) parameters and infarcted ventricular mass was assessed in a myocardial infarction (MI) model in New Zealand rabbits. Methods: A total of fifteen animals were used, out of which ten underwent left anterior descending coronary artery ligation to induce infarction (7–35% area). Myocardial infarction (MI) evolved and stabilized during a three month-period, after which, rabbits were sacrificed and the injured area was histologically confirmed. Right before sacrifice, ECGs were obtained to correlate several of its parameters to the infarcted mass. The latter was normalized after combining data from planimetry measurements and heart weight. The following ECG parameters were studied: RR and PR intervals, P-wave duration (PD), QRS duration (QRSD) and amplitude (QRSA), Q-wave (QA), R-wave (RA) and S-wave (SA) amplitudes, T-wave peak amplitude (TA), the interval from the peak to the end of the T-wave (TPE), ST-segment deviation (STA), QT interval (QT), corrected QT and JT intervals. Corrected QT was analyzed with different correction formulae, i.e., Bazett (QTB), Framingham (QTFRA), Fridericia (QTFRI), Hodge (QTHO) and Matsunaga (QTMA) and compared thereafter. The former variables and infarcted ventricular mass were then fitted to the allometric equation in terms of deviation from normality, in turn derived after ECGs in 5 healthy rabbits. Results: Six variables (JT, QTB, QA, SA, TA and STA) presented statistical differences among leads. QT showed the best allometric fit (r = 0.78), followed by TA (r = 0.77), STA (r = 0.75), QTFRA (r = 0.72), TPE (r = 0.69), QTFRI (r = 0.68) and QTMA (r = 0.68). Corrected QT’s (QTFRA, QTFRI and QTMA) performed worse than the uncorrected counterpart (QT), the former scaling allometrically with similar goodness of fits. Conclusions: QT, TA, STA and TPE could possibly be used to assess infarction extent in an old MI event through the allometric model as a first approach. Moreover, the TPE also produced a good allometric scaling, leading to the potential existence of promising allometric indexes to diagnose malignant arrhythmias.