IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Cyclic homology of Brzezi´ nski’s crossed products and of braided Hopf crossed products
Autor/es:
GRACIELA CARBONI; JORGE A. GUCCIONE; JUAN J. GUCCIONE; CHRISTIAN VALQUI
Revista:
ADVANCES IN MATHEMATICS
Editorial:
ACADEMIC PRESS INC ELSEVIER SCIENCE
Referencias:
Lugar: Amsterdam; Año: 2012 vol. 231 p. 3502 - 3502
ISSN:
0001-8708
Resumen:
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1_V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezi´nski.We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.