IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Stiefel and Grassmann manifolds in quantum chemistry
Autor/es:
CHIUMIENTO EDUARDO; MELGAARD MICHAEL
Revista:
JOURNAL OF GEOMETRY AND PHYSICS
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2012 vol. 62 p. 1866 - 1866
ISSN:
0393-0440
Resumen:
We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slater type variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove that they are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds.These geometric properties underpin state-of-the-art results on existence of solutions to Hartree-Fock type equations.