IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
OPERATOR INEQUALITIES RELATED TO THE CORACH-PORTA-RECHT INEQUALITY
Autor/es:
CRISTIAN CONDE; MOHAMMAD SAL MOSLEHIAN; AMEUR SEDDIK
Revista:
LINEAR ALGEBRA AND ITS APPLICATIONS
Editorial:
ELSEVIER SCIENCE INC
Referencias:
Lugar: Amsterdam; Año: 2012 vol. 436 p. 3008 - 3008
ISSN:
0024-3795
Resumen:
Using elementary techniques we prove that if A;B are invertible positive operators in B(H); $tleq 2$ and $r in[1/2,3/2]$, then $$(t+2)|||A^rXB^{2-r}+A^{2-r}XB^r|||leq 2|||A^2X+tAXB+XB^2|||$$ for any unitarily invariant norm $|||.|||$ and X in the associated ideal $J_{|||.|||}. We also characterize the class of operators satisfying $|||SXS^{-1}+S^{-1}XS+kX|||geq (k+2)|||X|||$ under certain conditions.