IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Abstract splines in Krein spaces
Autor/es:
JUAN I. GIRIBET; ALEJANDRA MAESTRIPIERI; FRANCISCO MARTÍNEZ PERÍA
Revista:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Editorial:
Elsevier
Referencias:
Año: 2010 vol. 369 p. 423 - 423
ISSN:
0022-247X
Resumen:
We present generalizations to Krein spaces of the abstract interpolation and smoothing problems proposed by Atteia in Hilbert spaces: given a Krein space $KK$ and Hilbert spaces $HH$ and $EE$, (bounded) surjective operators $T: HH a KK$ and $V: HH a EE$, $ ho>0$ and a fixed $z_0in EE$, we study the existence of solutions of the problems$argmin {K{Tx}{Tx}_KK : , Vx =z_0}$ and $argminleft{ K{Tx}{Tx}_KK + ho |Vx-z_0|^2_EE : , xinHH ight}$.