CEFYBO   02669
CENTRO DE ESTUDIOS FARMACOLOGICOS Y BOTANICOS
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
Alteraciones conductuales inducidas por la temprana exposición al ruido durante distintas etapas del desarrollo. Mediadores bioquímicos involucrados y estrategias de neuroprotección.
Autor/es:
CAPANI, F; MOLINA, SJ; GUELMAN, LR
Lugar:
Buenos Aires
Reunión:
Congreso; VIII Interenational Congress of Research and Professional Practice of Psychology; 2016
Institución organizadora:
Facultad de Psicología, Universidad de Buenos Aires.
Resumen:
Estudios previos mostraron que la exposición de ratas inmaduras al ruido puede provocar alteraciones bioquímicas y en comportamientos relacionados al hipocampo, como la memoria y la ansiedad. Asimismo, estos parámetros han sido correlacionados con un desbalance oxidativo en el hipocampo. Por otra parte, la crianza en un ambiente enriquecido (AE) ha mostrado ser una herramienta neuroprotectora ante diferentes lesiones cerebrales.El objetivo del presente trabajo fue evaluar en ratas expuestas al ruido a diferentes edades la existencia de alteraciones en comportamientos relacionados al hipocampo, así como en los niveles de Trx1, una enzima antioxidante, en el hipocampo. La posible prevención de estas alteraciones a través de la crianza en un AE también fue examinada.Ratas de 7 y 15 días fueron expuestas a ruido (95-97 dB, 2h). Luego del destete, grupos de 3-4 ratas fueron transferidos a jaulas de AE o a jaulas estándar. Una semana después, se realizaron pruebas conductuales y disección del hipocampo para western blot.Se hallaron alteraciones significativas en conductas dependientes del hipocampo, así como también diferencias en los niveles de Trx1 en dicha estructura, que varían según la edad de exposición. Por otra parte, el AE fue capaz de restablecer algunos de los parámetros alterados por la exposición al ruido.Palabras ClaveRuido, hipocampo, comportamiento, ambiente enriquecido.Título en inglésBEHAVIORAL ALTERATIONS INDUCED BY EARLY NOISE EXPOSURE AT DIFFEERENT DEVELOPMENT STAGES. BIOCHEMICAL MEDIATORS INVOLVED AND STRATEGIES OF NEUROPROTECTION.Resumen en InglésPrevious studies showed that exposure of immature rats to noise can induce hippocampus-related behavioral and biochemical alterations. Likewise, a correlation with hippocampal oxidative status was found. Moreover, rearing these animals in an enriched environment (EE) has shown to be an effective protective tool against different central nervous system injuries.Therefore, the aim of the present work was to test if behavioral alterations induced by noise exposure at different ages might be related with hippocampal oxidative changes. The possible prevention of these changes through the use of an EE was also assessed.Rats of 7 and 15 days were exposed to noise (95-97 dB, 2h). After weaning, groups of 3-4 rats were transferred to EE or standard cages. One week later, different behavioral tests and hippocampus dissection for western blot were performed. Results showed behavioral and Trx1 levels differences between noise-exposed animals depending on the age of exposure. Moreover, rearing rats in EE might modify some of the changes induced by a previous exposure to noise.Palabras Clave en InglésNoise, hippocampus, behavior, enriched environment.________________________________________BibliografiaBaldini, S., Restani, L., Baroncelli, L., Coltelli, M., Franco, R., Cenni, M.C., Maffei, L., Berardi, N., 2013. Enriched early life experi- ences reduce adult anxiety-like behavior in rats: a role for insulin-like growth factor 1. J. Neurosci. 33 (28), 11715?11723.Cheng, L.,Wang, S.H., Chen, Q.C., Liao, X.M., 2011. Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol. Behav. 104 (5), 981?988.Cui, B., Wu, M., She, X., 2009. Effects of chronic noise exposure on spatial learning and memory of rats in relation to neuro- transmitters and NMDAR2B alteration in the hippocampus. J. Occup. Health 51 (2), 152?158. Cui, B., Wu, M.Q., Zhu, L.X., She, X.J., Ma, Q., Liu, H.T., 2013. Effect of chronic noise exposure on expression of N-methyl-D aspartic acid receptor 2B and Tau phosphorylation in hippo- campus of rats. Biomed. Environ. Sci. 26 (3), 163?168.Fujimoto, C. Yamasoba, T. (2014) Oxidative stresses and mitochondrial dysfunction in age-related hearing loss, Oxid. Med. Cell. Longevity 2014 (2014), Article ID 582849. Gannouni, N., Mhamdi, A., Tebourbi, O., El May, M., Sakly, M., Rhouma, K.B., 2013. Qualitative and quantitative assessment of noise at moderate intensities on extra-auditory system in adult rats. Noise Health 15 (67), 406?411.Goble, T.J., Møller, A.R., Thompson, L.T., 2009. Acute high- intensity sound exposure alters responses of place cells in hippocampus. Hear. Res. 253 (1-2), 52?59.Halliwell, Reactive species and antioxidants. (2006) Redox biology is a fundamental theme of aerobic life, Plant Physiol. 141 (2006) 312?322.Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, 4th Edn, Oxford Clarendon Press, 2007. Izquierdo, I., Medina, J.H., 1997. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68 (3), 285?316. Jáuregui-Huerta, F., García-Estrada, J., Ruvalcaba-Delgadillo, Y., Trujillo, X., Huerta, M., Feria-Velasco, A., Gonzalez-Perez, O., Luquín, S., 2011. Chronic exposure of juvenile rats to envir- onmental noise impairs hippocampal cell proliferation in adulthood. Noise Health 13 (53), 286?291.Jiang, C., Xu, X., Yu, L., Xu, J., Zhang, J., 2015. Environmental enrichment rescues the degraded auditory temporal resolu- tion of cortical neurons induced by early noise exposure. Eur. J. Neurosci. 42 (5), 2144?2154.Kraus, K.S., Mitra, S., Jimenez, Z., Hinduja, S., Ding, D., Jiang, H., Gray, L., Lobarinas, E., Sun, W., Salvi, R.J., 2010. Noise trauma impairs neurogenesis in the rat hippocampus. Neuroscience 167 (4), 1216?1226.Kujawa, S.G., Liberman, M.C., 2006. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J. Neurosci. 26 (7), 2115?2123.Laviola, G., Hannan, A.J., Macri, S., Solinas, M., Jaber, M. (2008). Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol. 31:159-168.Lores-Arnaiz, S., Bustamante, J., Arismendi, M., Vilas, S., Paglia, N., Basso, N., Capani, F., Coirini, H., Costa, J.J., Arnaiz, M.R., 2006. Extensive enriched environments protect old rats from the aging dependent impairment of spatial cognition, synap- tic plasticity and nitric oxide production. Behav. Brain Res. 169 (2), 294?302.Manikandan, S., Padmab, M.K., Srikumar, R., Parthasarathy, N.J., Muthuvel, A., Sheela Devi, R., 2006. Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical-imbalance in hippocam- pus and medial prefrontal cortex. Neurosci. Lett. 399, 17?22.Molina S.J., Miceli, M. and Guelman, L.R. (2016). Noise exposure and oxidative balance in auditory and extra-auditory structures in adult and developing animals. Pharmacological approaches aimed to minimize its effects. Pharmacological Research pp. 86-91 Molina, S.J., Capani, F. & Guelman, L.R. (2016). Noise exposure of immature rats can induce different age-dependent extra-auditory alterations that can be partially restored by rearing animals in an enriched environment. Brain Res. 1636:52-61.Petrosini, L., De Bartolo, P., Foti, F., Gelfo, F., Cutuli, D., Leggio, M. G., Mandolesi, L., 2009. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res. Rev. 61 (2), 221?239.Pienkowski, M., Eggermont, J.J., 2012. Reversible long-term changes in auditory processing in mature auditory cortex in the absence of hearing loss induced by passive, moderate- level sound exposure. Ear Hear. 33 (3), 305?314.Rabat, A., 2007. Extra-auditory effects of noise in laboratory animals: the relationship between noise and sleep. J. Am. Assoc. Lab. Anim. Sci. 46 (1), 35?41.Sakurai, Y., 2002. Coding of auditory temporal and pitch infor- mation by hippocampal individual cells and cell assemblies in the rat. Neuroscience 115 (4), 1153?1163.Sa¨ ljo¨ , A., Mayorga, M., Bolouri, H., Svensson, B., Hamberger, A., 2011. Mechanisms and pathophysiology of the low-level blast brain injury in animal models. Neuroimage 54 (Suppl. 1), S83?S88.Sathyasaikumar, K.V., Swapna, I., Reddy, P.V. , Murthy Ch, A. Dutta Gupta, B. Senthilkumaran, P. Reddanna, Fulminant (2007) hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla, Neurochem. Res. 32 (3) 517?524. Uran, S.L.,Go´mez-Casati,M.E.,Guelman,L.R.,2014.Long-term recoveryfromhippocampal-relatedbehavioralandbiochem- ical abnormalitiesinducedbynoiseexposureduringbrain development.Evaluationofauditorypathwayintegrity.Int.J. Dev.Neurosci.37,41?51. Uran, S.L.,Aon-Bertolino,L.,Caceres,L.G.,Capani,F.,Guelman,L. R., 2012.Rathippocampalalterationscouldunderliebeha- vioral abnormalitiesinducedbyexposuretomoderatenoise levels.BrainRes.1471,1?12. Uran, S.L.,Caceres,L.G.,Guelman,L.R.,2010.Effectsofloudnoise on hippocampalandcerebellar-relatedbehaviors.Roleof oxidativestate.BrainRes.1361,102?114.Wang, X., 2004. The unexpected consequences of a noisy envir- onment. Trends Neurosci. 27 (7), 364?366.Xi, M.C., Woody, C.D., Gruen, E., 1994. Identification of short latency auditory responsive neurons in the cat dentate nucleus. Neuroreport 5 (13), 1567?1570