CEFYBO   02669
CENTRO DE ESTUDIOS FARMACOLOGICOS Y BOTANICOS
Unidad Ejecutora - UE
artículos
Título:
Dehydroepiandrosterone and metformin regulate proliferation of murine T lymphocytes.
Autor/es:
SOLANO, MARIA EMILIA; SANDER, VALERIA; WALD, MIRIAM RUTH; MOTTA, ALICIA
Revista:
CLINICAL AND EXPERIMENTAL IMMUNOLOGY
Editorial:
Blackwell Scientific Publications
Referencias:
Lugar: Oxford; Año: 2008 vol. 153 p. 289 - 296
ISSN:
0009-9104
Resumen:
The aim of the present study was to assess the effect of dehydroepindrosterone (DHEA: 10 mM) and metformin (10 mM and 100 mM) in regulating proliferation of cultured T lymphocytes. T cells were isolated from lymph nodes of prepuberal BALB/c mice. We found that DHEA, metformin and DHEA + metformin added to the incubation media diminished proliferation of T cells. The inhibition by DHEA was higher than that produced by metformin, while the combined treatment showed a synergistic action that allowed us to speculate distinct regulatory pathways. This was supported later by other findings in which the addition of DHEA to the incubation media did not modify T lymphocyte viability, while treatment with metformin and DHEA + metformin diminished cellular viability and increased both early and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. of T cells. The inhibition by DHEA was higher than that produced by metformin, while the combined treatment showed a synergistic action that allowed us to speculate distinct regulatory pathways. This was supported later by other findings in which the addition of DHEA to the incubation media did not modify T lymphocyte viability, while treatment with metformin and DHEA + metformin diminished cellular viability and increased both early and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. and late apoptosis. Moreover, DHEA diminished the content of the antioxidant molecule glutathione (GSH), whereas M and DHEA + metformin increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways and that not only the increase, but also the decrease of oxidative stress inhibited proliferation of T cells, i.e. a minimal status of oxidative stress, is necessary to trigger cellular response. increased GSH levels and diminished lipid peroxidation. We conclude that DHEA and metformin diminish proliferation of T cells through different pathways an