INGEBI   02650
INSTITUTO DE INVESTIGACIONES EN INGENIERIA GENETICA Y BIOLOGIA MOLECULAR "DR. HECTOR N TORRES"
Unidad Ejecutora - UE
artículos
Título:
TcrPDEA1, a cAMP-specific phosphodiesterase with atypical
Autor/es:
ALONSO, G.; SCHOIJET, A.; TORRES, H.N.; FLAWIÁ, M.M.
Revista:
MOLECULAR AND BIOCHEMICAL PARASITOLOGY
Editorial:
Elsevier
Referencias:
Año: 2007 vol. 152 p. 72 - 79
ISSN:
0166-6851
Resumen:
Abstract Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of cAMP and cGMP, and regulate a variety of cellular processes by controlling the levels of these second messengers. We have previously described the presence of both a calcium-stimulated adenylyl cyclase and two membrane-bound cAMP-specific PDEs (one of them strongly associated to the flagellum and the other one with a possible vesicular localization) in Trypanosoma cruzi. Here we report the identification and characterization of TcrPDEA1, a singular phosphodiesterase of T. cruziTrypanosoma cruzi. Here we report the identification and characterization of TcrPDEA1, a singular phosphodiesterase of T. cruzi which is resistant to the typical phosphodiesterase inhibitors, such as IBMX, papaverine and theofylline. TcrPDEA1 is a single copy gene that encodes a 620-amino acid protein, which is grouped with PDE1 family members, mainly with its kinetoplastid orthologs. TcrPDEA1 was able to complement a mutant yeast strain deficient in PDE genes, demonstrating that this enzyme is a functional phosphodiesterase. TcrPDEA1 is specific for cAMP with a high Km value (191.1±6.5M). Cyclic GMP neither activates the enzyme nor competes as a substrate. In addition, calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. encodes a 620-amino acid protein, which is grouped with PDE1 family members, mainly with its kinetoplastid orthologs. TcrPDEA1 was able to complement a mutant yeast strain deficient in PDE genes, demonstrating that this enzyme is a functional phosphodiesterase. TcrPDEA1 is specific for cAMP with a high Km value (191.1±6.5M). Cyclic GMP neither activates the enzyme nor competes as a substrate. In addition, calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. TcrPDEA1 is a single copy gene that encodes a 620-amino acid protein, which is grouped with PDE1 family members, mainly with its kinetoplastid orthologs. TcrPDEA1 was able to complement a mutant yeast strain deficient in PDE genes, demonstrating that this enzyme is a functional phosphodiesterase. TcrPDEA1 is specific for cAMP with a high Km value (191.1±6.5M). Cyclic GMP neither activates the enzyme nor competes as a substrate. In addition, calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. Km value (191.1±6.5M). Cyclic GMP neither activates the enzyme nor competes as a substrate. In addition, calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved. T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway. © 2006 Elsevier B.V. All rights reserved.